
Journal of  Statistical Physics, Vol. 79, Nos. 5/6, 1995 

Conserved Moments in Nonequilibrium 
Field Dynamics 

M. B. Mineev-Weinste in  I and F. J. Alexander  I 

Received April 15, 1994; final December 8. 1994 

We demonstrate with the example of Cahn-Hilliard dynamics that the macro- 
scopic kinetics of first-order phase transitions exhibits an infinite number of 
constants of motion. Moreover, this result holds in any space dimension for a 
broad class of nonequilibrium processes whose macroscopic behavior is governed 
by equations of the form O~k/Ot=.~W(gp), where ~b is an "order parameter," 
W is an arbitrary function of ~b, and ~ is a linear Hermitian operator. We 
speculate on the implications of this result. 
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1. I N T R O D U C T I O N  

M a n y  p r o b l e m s  in n o n e q u i l i b r i u m  field dynamics  such as sp inoda l  d e c o m -  
pos i t ion  t l) and  pa t t e rn  f o r m a t i o n  (2) have  a uni fy ing  descr ipt ion.  N a m e l y ,  

the i r  m a c r o s c o p i c  b e h a v i o r  can  be  descr ibed  by  e q u a t i o n s  of  the fo rm 

o4~/ot = ze( w(  4~) + ,I) (1) 

where  q~ is an  " o r d e r  p a r a m e t e r "  (possibly  a vec to r  o r  tensor) ,  ~ is a 

l inear,  H e r m i t i a n  ope ra to r ,  W(~b) is a func t ion  o f  ~b, and  r/ is a s tochas t ic  

var iable .  
I t  was recent ly  s h o w n  (31 tha t  processes  descr ibed  by (1) on  an a rb i t r a ry  

d-d imens iona l  mani fo ld  ,//r possess an  infinite n u m b e r  of  conserved  quanti t ies:  

C ,, = f ~,. c) d dx (2) 
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where ~ , ,  = 0. That is, the projections of q~ on the null space of Za are time 
invariant. If ~ is infinite (e.g., Ra), then W(~b) should decay sufficiently fast 
as r ~  ~ if the ~,, diverge as r---, c~, or at the origin if the ~,, diverge at the 
origin. The criterion that C,, is constant is very simple: C,, should be finite. 
This result is an extension of previous results t4) corresponding to the 
singular limit when 4, is a step function on the moving boundary. 

A proof of this general result is remarkably simple, and we sketch it 
here. Since the eigenfunctions $,, are independent of time, 

dC, O~ 
dt =!,, ~b"-~ dax (3) 

which from ( 1 ) gives 

dC,,=j: $,,~(W(4)+~) dax (4) 
dt j~ 

Since 5 a is Hermitian and .s = 0, 

dC,,= f (.Le~b,,)(W(q~)+~l)dax=o (5) 
dt Jt 

Therefore the "moments" C,, are constant in time. 
In view of the complexity that these systems often exhibit (W can 

be nonlocal and highly nonlinear), it is surprising to observe that there 
exist an infinite number of constants of motion. It is precisely these con- 
servation laws which are attributed to the exactly integrable interface 
dynamics in Laplacian pattern formation, tS~ In this paper, we discuss the 
application of this observation to several problems in nonequilibrium 
statistical mechanics, in particular the kinetics of first-order phase tran- 
sitions. 

2. P H A S E  S E P A R A T I O N  

When a uniform binary alloy is quenched from equilibrium at high 
temperature to a lower temperature at which the uniform state is no longer 
stable, it undergoes phase segregation. Typically the macroscopic dynamics 
of a phase transition is described by an equation of the form 

a~ 6H 
@t = LV2,5-~- (6) 
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where H is the free energy functional for the order parameter ~b, and L is 
a kinetic coefficient. A common choice for H is the Ginzburg-Landau 
potential, 

i~2 1 (b2+l ] H G L [ ~ ] = f  ~-(V~b)2--~a a 4a ~4 dax  (7) 

This choice is suitable for modeling the order parameter dynamics in phase 
segregation for solid alloys without elastic interactions. The order param- 
eter ~b (a scalar in this case) represents, for example, the local difference in 
concentration between alloy components, ~ is the correlation length, and 
1/4a is the depth of the double-well potential. This choice of free energy 
leads to the Cahn-Hilliard (CH) equation ~]) 

O~/Ot = V2(r + (~b - qJ3)/a + q) (8) 

Note that this is of the form ( 1 ), and that the order parameter ~b is conserved 
globally in time. 

Due to the complexity and nonlinearity of these and other nonequi- 
librium processes, the current theoretical understanding is far from com- 
plete. Therefore, here we restrict ourselves to a study of the CH equation 
as a model for phase transition kinetics. The CH equation (8) is parti- 
cularly useful since it qualitatively describes a variety of pattern formation 
and phase separation processes, and with additional terms one can model 
a variety of other physical phenomena (e.g., pure diffusion and growth in 
a random field). Moreover, this is a limiting case of a phase-field equa- 
tion (6~ describing pattern formation when the appropriate relaxation time 
tends to zero. In the limit ~---, 0 and a--* 0 in the phase field model this 
problem degenerates to the Stefan problem (generally with nonzero surface 
tension). (7) It was shown (3) that in this limit, the interface dynamics 
problem can be exactly integrable, and the conserved quantities C, of (2) 
play the role of polynomial conservation laws. 

It follows from the observation (5) that although ~b initially may be 
composed of only a finite number of modes, because of the nonlinearity, 
superharmonics will in general be generated in the course of the evolution. 
For example, in R 2, with s 2, the eigenfunctions r from (2) are 
chosen to be z", where z = re i~ If only the first n modes are present at t = 0, 
then 

~(r, t = O) = ~. ~k(r, I = O) e ikO (9) 
k = - -  n 
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where r and 0 are polar coordinates. However, from (5) and the ortho- 
gonality of the e ik~ each harmonic should adhere to the following constraint: 

~: ' r k+ l~k(r, t) d r = O  (10) 

for k > ln[. It follows from (9) that although ~b, = 0 initially, these modes 
evolve to some nonzero value with the constraint (10). This implies an 
oscillatory, decaying behavior of ~bk(r ). 

In higher dimensions the eigenfunctions must be chosen appropriately. 
If, for example, J / = R  3 with L~' V 2, then / / .... t , , ,  = ~ , , ,=  Y , , , = r  r , , t v ,  (b), the 
spherical harmonics. 

3. N U M E R I C A L  S I M U L A T I O N S  

As is evident from (1), the same initial distribution of order parameter 
~b for different forms of the function W will produce the same constants of 
motion C,,. That this should hold on a lattice is not guaranteed, since the 
discretized version of the operator c~ will in general not be Hermit ian.  To 
demonstrate that a somewhat weakened version of the continuum result 
also holds on a lattice, we decided to study three qualitatively different 
physical processes in the framework of CH dynamics: linear diffusion and 
spinodal decomposition in the presence and absence of a random magnetic 
field. The results of our numerical investigations are that while the 
evolution of ~b is very different for each of these processes (see Figs. lb, lc, 
and ld), the moments C1 to C7 are constant throughout the length of the 
evolution, and higher "harmonic" moments are unchanging to within 
machine accuracy. We speculate on the possible impact on the topology of 
the final distribution of ~b and on the physics of this process. 

We carried out our simulations on two-dimensional periodic lattices of 
size 1024 x 1024. Periodic lattices were chosen for simplicity, but since the 
times of the runs were short enough, they imitate an infinite system. Longer 
runs would have allowed sites to interact with their periodic images, and 
the choice of eigenfunctions would have been different. 

The initial configuration of the order parameter ~b was chosen to be 
identical for all three dynamics. It was generated according to the distribu- 
tion P[q~(x, t = 0 ) ] ,  where P[~b] is Gaussian with ( ~ b ) = 0  and (~b 2) = 
0.05. For r > R = 256 lattice units, ~b = - 1 .  We used a first order Euler 
scheme to integrate (6). Instead of discretizing the Laplacian as 

V Z f ( z ) = f ( z + i ) + f ( z - i ) + f ( z + l ) + f ( z - 1 ) - 4 f ( z )  (11) 
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Fig. 1. (a) Initial conditions for the quench described in the text and then after 2000Jt for 
(b) spinodal decomposition, (c) linear diffusion, and (d) spinodal decomposition in a 
magnetic field. Black represents regions of ff > 0, while for white, q~ < 0. Only a 257 x 257 
lattice site portion of the entire system is shown. 

which would exactly conserve the moments  Co, C~, C2, and C3 but not 
higher ones, we chose a discretization which conserves the next four higher 
moments  as well. In our simulations we used 

VLf(Z) = f ( z  + i) + f ( z  -- i) + f ( z  + 1) + f ( z  -- 1) -- 4f(z) 

+ 1 / 4 [ f ( z + i +  1 ) + f ( z - - i +  1 ) + f ( z + i - -  1) 

+ f ( z - - i - -  1)--  4f (z) ]  (12) 

Thus we have the finite-difference scheme 

4,(x, t +  1) 

3t , (_f l (b  + c t $ 3 _  1 ) = r t) + 2(----~x~2 V~, 7 ~  V~r + h ( x )  r (13) 
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r 

Fig. I. Continued 

For  the case of  linear diffusion we chose f t = 0 . 3 ,  f ix=  1.7, ~ = 0 ,  
fl = - 1.0, y = 0, and h(x) = 0 for all x. For  CH without a magnetic field we 
chose parameters identical to those in ref. 8: f t = 0 . 3 ,  f ix=  1.7, ct= 1.0, 
fl = 1.0, y = 1.0, and h(x) = 0 for all x. In the case of  CH with a random 
magnetic field we used fit = 0.025, f ix=  1.0, ~ =  1.0, f l =  1.0, ) ,= 1.0, and 
( h ( x ) )  = 0 and ( h 2 ( x ) )  = 2. 

Note  that in the CH equation single-phase domains grow like t~/3, ~8) 
while in in the presence of  a random magnetic field they grow logarithmi- 
cally in time/9) In diffusion, the initial noise is smeared out, and domains 
of the same sign of ~b grow like t ~/2, i.e., diffusively. Although the order 
parameter configurations are different at different times and for different 
dynamics, each of the first 18 harmonic moments  are time and dynamics 
independent. Our  choice of discrete Laplacian guarantees that C~ ..... C7 will 
have this property, but to machine accuracy, C 8 to C~s also do. 
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Fig. 1. Continued 

To demonstra te  that  C,, = const holds only for ~k,, that  are solutions of  
V2~b,, = 0  in two dimensions ~,, = z", we also studied the evolution of the 
so-called "anharmonic"  moments ,  i.e., C,,,, = ~ r  dx,  where n ~ 0. We 
found that  in general the C .... are not conserved. This indicates that the 
conservat ion of the harmonic  moments  C,, is not due to a slow evolution 
of the field. A similar analysis was performed earlier t'~ to demonstra te  that  
two-dimensional  diffusion-limited aggregation has potentially an infinite 
number  of  conservation laws. 

Recently Tomi ta  t ~  showed that the dipole momen t  d =  I x~b is con- 
served in two-dimensional  C H  dynamics,  but that  the momen t  of  inertia 
I =  ~ ~b(x2+ y2)ddx  is not. This clearly follows from our  results, since z 
is harmonic,  whereas x 2 + y2 = zz7 is not. Rather  ~ ~b(x 2 - y2) d x  dy is the 
second momen t  which should be (and is) conserved. 

822/79/5-6-16 



1020 Mineev-Weinstein and Alexander 

d 

Fig. 1. Conthmed 

4. P H Y S I C A L  I M P L I C A T I O N S  

The integrals C,, have a very clear physical interpretation: they are 
the coefficients of the multipole expansion of a "potential" ~ created by a 
"charge density" q=(~b+ 1)/2 in the domain where q = 0  (i.e., in a far 
field), t4) 

~aq/=(~b+ 1)/2 (14) 

The following arguments (for the 2D case where L~a is the Laplacian 
operator) may aid in understanding the last statement: One can imagine 
matter with density ~, = (~b + 1 )/2 distributed in the finite part of the space 
so that it vanishes in the far field. This matter creates a Newtonian poten- 
tial in space 

U(x, y ) =  f log I z - z , l ~ ( x , ,  yl)dx! dy I (15) 
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Taking the gradient and considering Izl to be so large that Ir~/zl < 1 
everywhere where the density I~bl is not zero, one has (making a series 
expansion of the right-hand side with respect to I z ~/z I ) V U(r) = Y. Ck z - k. 

This means that the moments Ck we deal with are nothing else but 
multipole moments of the potential created by the "density" (~b + 1)/2 in 
the far-field region. Therefore, the problem of recovering the dynamics of 
~b(x, t) is reduced to the inverse potential problem, ~2~ that is, to obtaining 
the charge density from the far-field potential. 

Because the inverse problem is in general ill-posed (i.e., has a multi- 
tude of solutions), it is clear that far from the nonzero q one can measure 
the same potential corresponding to the same initial configuration of ~b but 
with different dynamics during the evolution. Therefore, the knowledge of 
this potential is not enough to specify the evolution. The evolution takes 
place only beyond the null space of ~ ,  while the projection of ~ to the 
null space of the operator s is not changed in time. Therefore, that the 
C,, are constants does not provide us with much information about the 
dynamics ,  but can shed light on the quasiequilibrium properties of these 
systems. 

We believe that knowledge of the quantities C,, can help in the 
long-time limit where ~b attains a quasiequilibrium state governed by 
V2(OH/~b) = 0. This equation, typically nonlinear, has many solutions, and 
we do not know which one to select as the final state [br a given initial 
distribution of ~b. While the conserved quantities do not select a unique 
final state, they nevertheless dramatically reduce the number of possible 
choices. It seems that the initial distribution of the order parameter 
~b(x, t = 0) creates topological constraints on possible final states, and the 
evolution occurs subject to these constraints. 

As mentioned above, the singular limit of the CH equation when both 
a and ( tend to zero corresponds to Laplacian growth which can be 
integrable at least in two dimensions for a singly connected domain, tS~ This 
corresponds to a bistable case of ~b = ~ • (~b = + 1 for HGL ). In this case the 
associated inverse problem becomes a well-posed one. This implies that the 
conserved quantities C,, appear to be enough to characterize the shape of 
a cluster of ~b = + 1 surrounded by a "sea" of ~b = - 1 .  In the context of 
phase transition kinetics this corresponds to the Ising limit, where the 
order parameter ~b at each site can only have two values ~b = _  1. Our 
results imply'that in this limit knowledge of the C,, (from the initial data) 
can determine the final spin configuration uniquely (if the spin-up cluster 
is singly connected) or can at least considerably reduce the selection of 
possible final configurations in the case of a multiply connected topology 
(which is typical in phase transition kinetics). So it appears that the Ste fan 
limit corresponds to the Ising limit. 
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In conclusion, we have shown that the nonlinear dynamics of  a field 
given by Eq. (1) possesses an infinite number  of  conserved quantities C, ,  
Eq. (2), corresponding to the coefficients of  a multipole expansion of  a 
potential created by ~b. Numerical simulations have shown that very dif- 
ferent examples of  (1) give rise to the same C , ,  even on a lattice. We 
discussed that in the Ising limit of  phase transition kinetics this problem 
can be uniquely solved in a long-time limit, where the order parameter  
reaches its quasiequilibrium state. Because of  nonperturbative effects, it 
might prove useful to investigate the behavior of  the harmonic moments  for 
a spin exchange Ising model where the effects of noise and discrete spin are 
present. Even more interesting would be an experimental measurement of 
the C ,  in a phase-separating binary fluid or alloy. 
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